If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=5t^2+35t+40
We move all terms to the left:
0-(5t^2+35t+40)=0
We add all the numbers together, and all the variables
-(5t^2+35t+40)=0
We get rid of parentheses
-5t^2-35t-40=0
a = -5; b = -35; c = -40;
Δ = b2-4ac
Δ = -352-4·(-5)·(-40)
Δ = 425
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{425}=\sqrt{25*17}=\sqrt{25}*\sqrt{17}=5\sqrt{17}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-35)-5\sqrt{17}}{2*-5}=\frac{35-5\sqrt{17}}{-10} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-35)+5\sqrt{17}}{2*-5}=\frac{35+5\sqrt{17}}{-10} $
| 8/x-0.02=0.18 | | 5^x+3=3^2x-1 | | 3^1-3x=7^x | | W(w+3)=72 | | 3q-7=16 | | 3x-4(3x+1)+3^2=0 | | Y=0.5x+5.36 | | 2-3(p+5)=5(p-2)+1 | | 1/3p-4=11 | | 2^(x+3)+2^x=288 | | 135x30=4050 | | 7y+11y=72 | | 7^0.7x=755 | | x^2-10x+3150=0 | | 18(7x-10)-3x-4=14(2x+10) | | 20(-18x+3)+6x+5=8(-8x+6) | | 5y-3=7(y-3)-2 | | 5(5x+6)=9(6x+3) | | 9(6x+2)=4(6x+10) | | 9x-10=-11x+8 | | x^2+4x+5=19 | | 19x-13=-19x+11 | | 6x-17=2x-15 | | 5(x+2)=(2x-4) | | 11x+19=20x-20 | | 4m^2-8m-32=0 | | 16^x=8^2x-1 | | 43-0.17p-3=p | | 5-7z=40 | | 4x-3=-36 | | 2x^2+11x=5=0 | | X/2+4x-12/5=7/10 |